A Generalised Solution to the Out-of-Sample Extension Problem in Manifold Learning

نویسندگان

  • Harry Strange
  • Reyer Zwiggelaar
چکیده

Manifold learning is a powerful tool for reducing the dimensionality of a dataset by finding a low-dimensional embedding that retains important geometric and topological features. In many applications it is desirable to add new samples to a previously learnt embedding, this process of adding new samples is known as the out-ofsample extension problem. Since many manifold learning algorithms do not naturally allow for new samples to be added we present an easy to implement generalized solution to the problem that can be used with any existing manifold learning algorithm. Our algorithm is based on simple geometric intuition about the local structure of a manifold and our results show that it can be effectively used to add new samples to a previously learnt embedding. We test our algorithm on both artificial and real world image data and show that our method significantly out performs existing out-of-sample extension strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional dynamical systems: A fresh view on the local qualitative theorems

The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...

متن کامل

Piecewise-Linear Manifold Learning

The need to reduce the dimensionality of a dataset whilst retaining inherent manifold structure is key in many pattern recognition, machine learning and computer vision tasks. This process is often referred to as manifold learning since the structure is preserved during dimensionality reduction by learning the intrinsic low-dimensional manifold that the data lies on. Since the inception of mani...

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

An integrated approach for scheduling flexible job-shop using teaching–learning-based optimization method

In this paper, teaching–learning-based optimization (TLBO) is proposed to solve flexible job shop scheduling problem (FJSP) based on the integrated approach with an objective to minimize makespan. An FJSP is an extension of basic job-shop scheduling problem. There are two sub problems in FJSP. They are routing problem and sequencing problem. If both the sub problems are solved simultaneously, t...

متن کامل

Improved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011